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of the Navier-Stokes Equations 

By J. Thomas Beale* and Andrew Majda** 

Abstract. Viscous splitting algorithms are the underlying design principle for many numerical 
algorithms which solve the Navier-Stokes equations at high Reynolds number. In this work, 
error estimates for splitting algorithms are developed which are uniform in the viscosity v as 
it becomes small for either two- or three-dimensional fluid flow in all of space. In particular, 
it is proved that standard viscous splitting converges uniformly at the rate C^lAt, Strang-type 
splitting converges at the rate CP(At)2, and also that solutions of the Navier-Stokes and 
Euler equations differ by Cp in this case. Here C depends only on the time interval and the 
smoothness of the initial data. The subtlety in the analysis occurs in proving these estimates 
for fixed large time intervals for solutions of the Navier-Stokes equations in two space 
dimensions. The authors derive a new long-time estimate for the two-dimensional Navier- 
Stokes equations to achieve this. The results in three space dimensions are valid for 
appropriate short time intervals; this is consistent with the existing mathematical theory. 

1. Introduction. Many of the most challenging and interesting numerical calcula- 
tions in fluid dynamics involve the approximation of solutions of the Navier- 
Stokes equations at sufficiently high Reynolds numbers. (We will refer to "small 
viscosity" and "high Reynolds number" interchangeably via standard nondimen- 
sionalization.) The random vortex method introduced by Chorin [2] for high 
Reynolds number flows in two space dimensions is a particularly successful 
numerical method for this class of problems with some unusual mathematical 
features. The method is a fractional step algorithm: in the first step, the inviscid 
Euler equations are approximated by a vortex-blob method; in the second step, the 
effects of small viscosity are simulated by vorticity creation at the boundary and a 
random walk of the blobs. Recently, questions have been raised as to the sound- 
ness of the above random vortex method even as a numerical method for comput- 
ing solutions of the Navier-Stokes equations defined on all of two-dimensional 
space, so that boundary layers do not occur; e.g., see [9]. The main results of this 
paper provide a rigorous proof of the fact that the viscous splitting algorithns, 
which are the underlying design principle for the random vortex method, converge 
to solutions of the Navier-Stokes equations in all of space at a rate which improves as 
the viscosity becomes smaller. The precise quantitative rate is given in the theorem 
stated below after these algorithms have been defined. 

Solutions of the Navier-Stokes equations are given by a velocity field u (x, t), 
x E RN, N = 2, 3, 0 < t < T, which satisfies the differential equations and initial 
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conditions 

au, + UV .vuv= \U" - VP" 
at 
V UP = 0, UP(X, 0) = UO(X), 

where v is the viscosity, normalized so that 0 < v < 1, and p ' is the corresponding 
scalar pressure. To discuss the viscous splitting algorithms which we analyze below, 
we will write E(t) for the solution operator of Euler's equations; i.e., if v0 is a 
divergence-free vector field on RN, E(t)vo = v(t), where v(t) satisfies Euler's 
equations 

Vt + v Vv + Vp = 0, 

(1.2) V v=0, v(0)=v0. 

We denote by uo(t) the solution of (1.2) with initial data u0(x). Similarly, H(t) will 
be the solution operator for the heat equation with small viscosity i; thus, 
H(t)wo = w(t) where 

(1.3) w, = PAw, w(0) = w0. 

If w0 is a divergence-free vector field, then H(t)wo has the same property. 
The viscous splitting algorithm, which is the underlying basis for the random 

vortex method, is given by the approximation 

f, = (H(At)E(At))'u0, 

and one expects that un approximates u' at the time nAt. We also analyze another 
similar viscous splitting algorithm below which has improved rates of convergence 
and is defined by 

(1.4) un = (H(At/2)E(At)H(At/2))nU0. 

(This algorithm is motivated by Strang's remarks in [10].) 
We introduce I * 1, (or sometimes I * IHK for emphasis) for the L2-Sobolev norm 

of order s of a given function and say u E HS when IuIs < o. Below, we use the 
fact that HS(RN) is a Banach algebra under pointwise multiplication for s > 2 
provided that N = 2, 3; see [6]. Our main result is the following one. 

THEOREM (Improved rates of convergence as the viscosity tends to zero). 
(A) For N = 2, suppose T is an arbitrarily large time and s is a fixed nonnegative 

integer. 
Assume uo E HS+a, where a is a fixed integer determined below, and also assume 

V X Uo E L'(R2). Then 

(1) max Iup(nAt) -nl, < CjvAt, 

(2) max Iu"(nAt) - un < C2v(At)2, 
0 <nAt <T 

(3) max 1U"(t) - U0(t)lI_2 < C3v, s > 4, 

where the constants C, i = 1, 2, are independent of v and depend only on IuoIs T, 
and IV X UOI LI- The constant C3 depends only on T, IUoIs, and V XUOI Ll- 
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(B) For N = 3, the same results as in (A) are valid provided that the time interval 
T is restricted to a sufficiently small size determined in [6]. 

We note that all the statements above hold with obvious modifications for 
spatially periodic flows of fixed periods in each coordinate direction. A precise 
version of the above theorem is given by Theorems 1.1-1.3, stated below. Some 
background material regarding the mathematical properties of solutions of the 
Navier-Stokes and Euler equations, which is useful for understanding the above 
theorem, and which we use freely below, is contained in the references [6] and [8]. 
In [8], McGrath constructed classical solutions of the Navier-Stokes and Euler 
equations in R2 for all time and proved the convergence, without a rate, of u (t) to 
u?(t) as v tends to zero; in [6], Kato proved a similar result in R3 for sufficiently 
short time intervals, and the same facts are also valid, mutatis mutandis, for flows 
in R2. Earlier, Ebin and Marsden [3], [4] studied the Euler equations in Lagrangian 
coordinates with RN replaced by a compact manifold. They proved the conver- 
gence of the algorithm defined by in to u', without a rate, for sufficiently short time 
intervals when N = 2 or 3. The subtlety in the proof of the above theorem lies in 
the proof of (A) for arbitrarily long time intervals in two space dimensions; in fact, 
in the course of proving (A) for large s, we derive a new estimate for solutions of 
(1.1) when N = 2 (see (1.8) below). 

Part (3) of the above theorem is a rigorous mathematical statement of the fact 
that the Navier-Stokes equations are a regular perturbation of the Euler equations 
when no boundaries are present. This fact is discussed in Section 4, but, for the 
moment, we remark on some of the numerical implications. In [5], Hald established 
the important result that appropriate inviscid vortex methods in all of R2 converge 
in L2 with second order accuracy to the solution uo(t) of the Euler equation. 
Denoting these vortex method approximations by uh(t), we have 

<mtax uh(t) - U0(t)10 ? Ch2. 

From (3) of (A) and the triangle inequality, it follows that 

max Iuh(t) - u"(t)lo S C(< + h2). 
O<t<T 

Thus, even without simulating the effects of viscosity, vortex methods approximate 
flows in all of R2 with small errors. Chorin [2] conjectured an error of the form 
o(p112 + h2) for the random vortex method without boundaries; the above esti- 
mate indicates that it is extremely unlikely that the addition of a random walk 
would further deteriorate the accuracy beyond this conjectured bound. These 
comments should be contrasted with those in [9]. 

We next discuss an explicit example which indicates that a simulation of the 
effects of viscosity through splitting algorithms can dramatically improve the 
quality of the approximate solution even for small viscosity. For flows in R2, we let 
X = (ul)y- (u2) denote the scalar vorticity. Let us assume that, at time t = 0, co is 
radially symmetric. It follows in standard fashion [1] that the solution u' with this 
initial data has vorticity given by 



246 J. THOMAS BEALE AND ANDREW MAJDA 

and that 
u = H(t)uo. 

Whenever the initial vorticity is a spherically symmetric function, the solution of 
the Euler equations is steady, so that E(t)uo = u0. From these facts, it follows 
easily that, for these symmetric initial data, 

un - n=u(nAt), 

so that the viscous splitting algorithms have no error, independent of P. However, if 
viscosity is ignored, E(t)uo = u0 and the error has the form described in (A3) of the 
theorem. 

For reasons which we discuss below, it is important that we prove the above 
theorem through the following separate steps. We state Theorems 1.1-1.3 only for 
the more complicated splitting algorithm in (1.4) since similar and even simpler 
arguments apply for the algorithm defined by fi. Our first result applies to 
two-dimensional flows when s = 1 in the above theorem. 

THEOREM 1.1. Suppose uo E H?(R2) with a sufficiently large but fixed and also 
V x u0 E L'(R2). Choose M > O so that 

IUOIH' + IV X UOILI < M. 

For each P with 0 < v < 1, let u be the solution of the Navier-Stokes equations (1.1) 
with initial data uo. With T > 0 arbitrary, and N a positive integer, set At = T/N 
and define un, 1 < n < N, by (1.4) so that 

Un-=H(/\t/2) E(A\t) H(At/2) Un_j ; 

then 

max Jun - up(nAt)IHI SCV(At)2< 

where CO depends only on M and T. 

As mentioned above, for flows in R3, a smooth solution of the Euler or 
Navier-Stokes equations is known to exist only for some finite time interval 
depending on the size of the initial data. Assuming IuoI0 < M with a large, the 
solution uv of (1.1), v > 0, satisfies 

(1.5) D~~~~~tJuP(t)J'a < CO|"^(t)12o 

where CO depends on a but not on v. The solution exists as long as the solution of 
this inequality remains finite; i.e., for 

(1.6) To < (C0M)1 

there is a solution in C([0, To]; H'(R3)) with 

(1.7) IuP(t), 6 A(l - C0mt)-l--M(t) 

This result is due to Kato and may be found in [6]. 
With this restriction on the time interval, we obtain a result similar to Theorem 

1.1. Here, in contrast to Theorem 1.1, we can show the convergence in Hm(R3) for 
any m provided a is large enough. The reason is that, for t < To, (1.7) provides a 
bound for u'(t) independent of v. 
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THEOREM 1.2. Let m be a positive integer. Suppose uo E H'(R3) with a sufficiently 
large, depending on m, and choose M > O so that luoLJ < M. For each v, 0 < v < 1, 
let u' be the solution of the Navier-Stokes equations with initial data uo, defined for 
0 < t < To, where To satisfies (1.6). With N a positive integer, let At = TO/N, and 
assume N is large enough so that 2At < (CM)-l - To. If un is defined by (1.4), 
1 < n < N, then 

max Jun - up(nAt)IHm < CoV(At)2, 
1<n<N 

where CO depends only on m, M, and To. 

Theorems 1.1 and 1.2 are proved in Section 2, assuming certain lemmas. These 
lemmas are proved in Section 3. In particular, Lemma 2.1 gives the nonlinear 
stability of the algorithm in (1.4) in Hs, s > 4, for arbitrarily large time intervals 
for two-dimensional flows. In Section 4, we use this stability estimate together with 
Theorem 1.1 to prove the following new estimate for solutions of (1.1) and (1.2): 

If T is an arbitrarily large time interval and u0 E HS(R2), V x u0 E L'(R2), s > 4, 
but otherwise arbitrary, then 

(1.8) max Ju"(t)I, < C, 
o<v< 1 

where C depends only on T, Juolj, and IV x uOIL'. 
Once the estimate (1.8) is established, it serves as a replacement for (1.7), so that 

the following facts are proved in Section 4 by essentially a repetition of the 
argument used in Theorem 1.2. 

THEOREM 1.3. Let a > 2 be the integer from Theorem 1.1 and assume that 
uo E Hs+G(R2), V X uo E L1(R2), s > 4. Then, with the notation of Theorem 1.1, 

max jup(t) - uo(t)ls-2 < C1V, 

max ju (nAt) - unls 6 C2v(At)2, 

where C2 depends only on T, Iuols+0, and IV X uOILI; C1 has the dependence described 
in (A3) of the main theorem above. 

We remark that the proofs of Theorems 1.1-1.3 do not proceed via the method 
used by Strang [11] for smooth solutions of nonlinear hyperbolic equations-in 
particular, we must estimate simultaneously in two different small free parameters, 
v and At. Unlike the argument in [111, it is essential that we substitute the 
approximation from (1.4) into the Navier-Stokes equations (1.1) and derive an 
equation for the error in satisfying (1.1). Furthermore, it is essential that the 
nonlinear stability of the algorithm in (1.4) is valid (see Lemma 2.1); stability of 
only the linearization, as in Strang's work, would not be sufficient. Finally, we end 
this section by commenting that the authors do not know a more direct proof of 
the estimate (1.8) for two-dimensional solutions of the Navier-Stokes equations at 
large times, i.e., one which does not use the stability of the viscous splitting 
approximation (1.4) in an essential fashion. 

2. Proofs of Theorems 1.1 and 1.2. We will use the orthogonal projection P of 
H0(R'; Rn) onto divergence-free vectors. For v E Ho, {(I - P)v)}() is just the 
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projection of vt(() on (. It is evident from the transform that P is also an orthogonal 
projection on Hs with the standard inner product. Applying P to the first of Euler's 
equations (1.2), we have P(Vp) = 0, and thus vt = Bv, with 

(2.1) Bv = -P(v * Vv). 

We note that P commutes with Av and H(t). 
The proof of Theorem 1.1 will require the following two lemmas, whose proofs 

we defer to Section 3. We use the notation 

Xs(R2) = {v E HS(R2): VXv E L1(R2), V v = 0) 

with the obvious norm. 

LEMMA 2.1. Witn u, as in Theorem 1.1 and s > 4, there exists a constant C1, 
depending only on s, T, and luo0xW, so that JuJx, < C1. 

LEMmA 2.2. For s > 5, the function F(t, vo) = E(t)vo is C 1 from 

Ks(R) =[O, T] x {vo E Xs: Ivol R) 

to Hs-2(R2), and F, D F, DvOF are bounded by a constant depending only on s, T, R. 
The derivative with respect to vo is the linear operator dF(t, vo) taking wo to the 
solution at time t of 

(2.2) Wt + P(v. Vw) + P(w. Vv) = 0, w(O) = wO, 
where v(t) = E(t)vo. 

Similarly, there exists so so that for s > so + 3, E(t)vo is C3 from Ks(R) to 
Hs-so(R2), and all derivatives are bounded by a constant depending on s, T, R. 

It is elementary that H(t)vo is Ck from Ks(R) to Hs-2k(R2). Also we have 

(2.3) IH(t)vj1xS < (volx, 

As a consequence of the two lemmas and this remark, if we choose a fixed n and 
define 

(2.4) u(t) = H(t/2)E(t)H(t/2)un, 

then u is C3 as a function of t E [0, T] with values in H0-sS-12 Moreover, D/u is 
bounded independent of At and n, 0 < j < 3. 

With u as above, we will first estimate the growth in Ho of 

r(t) = u(t) - u '(t + tQ). 
To do so, we check the consistency of (2.4) with the Navier-Stokes equations. 
Differentiating (2.4), we have 

Dtu(t) = (v/2)AHEHun + HBEHun + (v/2)H(dE)AHun, 

where H = H(t/2), E = E(t), dE = dE(t; H(t/2)un). We can rewrite this as 

Dtu = (vA + B)u(t) +f, 

wheref = f, + f2 and 

(2.5) f, = [ HB - BH] EHun, f2 = (v/2)H[ (dE)A - ]H Hun. 

Since u' satisfies the same equation withf replaced by 0, we have 

(2.6) rt = vAr + Bu-Bu' + f. 
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We can now use (2.1) to express this as 

(2.7) r,= JAr -(Puv.Vr)-P(r Vu)+f. 

Provided a is large enough, r is C1 with values in Ho. Thus, to estimate r, we 
take the inner product of (2.7) with r to obtain 

(r,, r) + vIrI2 = - Vr, r) - (r* Vu, r) + (f, r). 

The first term on the right is identically zero since V u = 0, as can be seen from 
integration by parts. The second term is bounded by IuICIrI2 O. Introducing 
R(t) = I r(t) HO, we have 

(2.8) Rt 6 aR + If(t)IHo, 

where a depends only on M and T. 
We will now estimate f. It is obvious that f2 is of order v; to see that the same is 

true for fl, we write H = H(t/2) as the integral of its derivative. We have 
H = I + vH, where 

H =t/2 AH(s) ds. 

Then, with v = EHun, we have 

fi =EHB- BH v = -PH(v* Vv) + P[ (Hv) * V(Hv)] 

= 'P{-H(v. Vv) + (Hv). V(Hv) + v V(Hv)}. 
Thus f/v is a C2 function of t with values in H1, provided a is large enough, and, 
using Lemma 2.2, we have 

If"(t)IHI < CV, 0 < t < At. 

It is obvious that f(O) = 0; we will show that in fact f'(0) = 0 as well, and it follows 
that 

(2.9) If(t)IHI < CVt, 0 < t < At. 

To compute f'(0), we first observe that the only contributions come from 
differentiating the operators inside the commutators; the other terms do not 
contribute since the commutators are zero at t = 0. For fl, with v = EHun as 
before, we have 

D,(HBv) = -PDJ[H(v * Vv)] = - (v/2)PA(v * Vv) + E 

= -(v/2)PA(un. Vu,) + e, 

where e stands for terms which vanish at t = 0, or which arise from differentiating 
v with respect to t. In the same way, 

Dt(-BHv) = PDt[ (Hv)* V (Hv)] 

= (v/2)P[ u. V(Aun) + (Auj). Vu,,] + e. 

Consequently, 

fi(0) = (V/2)P {-A(u,, V u,,) + u, * V(Au,,) + (Auj). V u',J. 
In computing f2(0), we have no contribution from differentiating 

dE(t; H(t/2)u,) with respect to the second t, since dE(0; ) I. With w = Hun, 
we have from Lemma 2.2 

Dt[dE(t; w)Aw] = -P[w. V(Aw) + (Aw). Vw] + E. 
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For the other term in f2, we have 

-Dt[AEw] = -ABw + e = A(u,. Vun) + c. 

Thus 

f2(0) = (v/2)P {-u. * V(Auj) - (Auj) Vu, + A(un. Vuj), 
which is precisely -fj(0). We have now shown that f'(0) = 0, and (2.9) is verified. 

Combining (2.8) and (2.9), we have the inequality 

R'(t) < aR(t) + bvt2 

and, for 0 < t < At, 
R'(t) < aR(t) + bv(At)2, 

so that 

(2.10) R(t) < eatR(0) + Cv(At)2t, R(At) < eaAtR(0) + Cv(At)3. 

Now let Rn = Iu - u(nAt)IHo. We have shown that 

Rk+j < ea&tRk + Cv(At)3. 

Since Ro = 0, it follows inductively that 

Rk 6 CV(At)2a-1(eakAt - 1) 

and therefore 

(2.11) Rk < C'v(At)2. 

We have now proved the assertion of the theorem with the error estimated in Ho, 
rather than H 1. To estimate derivatives, we first work with V x r, where the curl is 
regarded as a scalar, and r is as before. We take the curl of (2.6), noting 
Vx(I - P) = 0 and VX(u. Vu) = (u. V)(Vxu). With o =VXu, o' =VXu', 
and p = V x r = X - co , we obtain 

Pt = vAp - u V@ + u' VW' + V xf 
= vAp - u' Vp - r Vw4 + V xf. 

Then 

(Pt, P) + VIVP12 S |(u * Vp, p)| + kAlcilrlHOIPIHO + IfIH'IPIH0' 

The first term on the right is again zero. In the second, lwl cl is bounded by a 
constant if a is large, and, combining (2.10), (2.1 1), we have 

IrIHo 
< Cv(At)2, 0 < t < At. 

Applying (2.9) to the third term, we have 

DtIp(t)IHo < Cv(At)2, 0 < t < At. 

Therefore, 

IP(At)Ho < IP(0)IHo + CV(At)3, 

and, by induction, this implies 

(2.12) IV x u, - V x u`(nAt)IH0 
< 

Cv(At)2. 

Now, if v is any divergence-free vector field on 12, we can easily express the first 
derivatives of v in terms of V x v in the transform 

(D v) 1 ) = _p.j p-2(_p__ p.)(V x v)^). 
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From this it is obvious that 

(2.13) |DxjVIHs < IVXVIHS 

for any s > 0. Applying this inequality with s = 0 to (2.12) and recalling (2.1 1), we 
obtain the conclusion of the theorem. 

The argument just given applies as well to the three-dimensional case of 
Theorem 1.2 provided that Lemmas 2.1, 2.2 are replaced with the following 
modifications. 

LEMMA 2.3. Assume a > 3. With u, as in (1.4), we have IUn IH < OM(To). 

LEMMA 2.4. The statement of Lemma 2.2 holds with s replaced by a, Xs by Hs, R 

by kM(To), and T by T1 = {(CO M)' - TO /2. 

These lemmas are discussed in Section 3 after Lemmas 2.1 and 2.2. To show 
convergence in Hm in the above argument, we return to Eq. (2.7). Taking the 
Hm-inner product with r, we have, for m > 3, 

(re, r)m + v(Vr, Vr)m < |u'ImIrI2 + Cllul,m++llrl2 + C21flmIrmI 
On the right-hand side we have used (2.2) and (2.1) of [6], respectively, in the first 
two terms. From Lemma 2.3 and the estimate (1.7) for u', we have 

DtIr(t)Im < C1lr(t)lm + C21f(t)Im, 0 < t < At. 

Moreover, for a large enough, (2.9) can be improved to 

If(t)lm < Cvt2, 0 < t < At. 

Thus, we obtain for Ir(t)Im an estimate of the same form as (2.10) for R(t). The 
proof of Theorem 1.2 is now completed by repeating the steps which led to (2.1 1). 

For the case of periodic flows, analogous lemmas hold, and the proofs of 
Theorems 1.1 and 1.2 apply without change. The derivation of the lemmas in this 
case is discussed at the end of Section 3. 

3. Proof of the Lemmas. To prove Lemmas 2.1 and 2.2 we will begin with 
estimates in classical norms for the solution of Euler's equations as obtained by 
McGrath [8] and use these to derive estimates in Hs for large s. In [8] a solution of 
Euler's equations is constructed on an arbitrary interval 0 < t < T1, using the 
equation for the vorticity X = V x u of a velocity field u satisfying the two-dimen- 
sional Euler equations, 

(3.1) ct +u .VW=0. 

The vorticity is treated as the unknown, and the velocity is obtained through an 
integral operator. The following lemma is a summary of bounds obtained for the 
solution in [8]. It is assumed that u(0) and o(0) are in C'(R2) and w(0) E L'(R2). 
Then u and w are in C1(R2 x [0, T1]). 

LEMMA 3.1. Suppose that 

Io(0)ILI + IW(0)IL = MI 

and o(0) satisfies the Holder condition with exponent X, 0 < X < 1, and constant 
M2 > 2M1. Then, for O < t < TI, 

(i) IW(t)ILl + I|(t)ILX MI; 
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(ii) w(t) is Holder continuous with exponent 4,8 and constant M2, where /3= 

exp(-COM, T1), Co being a universal constant; 
(iii) MOIt)L- < 2,gM,; 

(iV) lDxU(t)IL' < CX_; 

(V) | WX(O|L?? < |DxW(O)I L_exp(CX1 t). 
The constant C depends only on M1, M2, and an upper bound for T1. 

We discuss these statements briefly; lemmas and equations from McGrath's 
paper referred to here are followed by the label [8]. Assertion (i) follows from 
(2.3)[8] and the proof of Lemma 2.1[8]. Then (iii) follows from Lemma 1.2(a)[8]. In 
the definition of /3 on p. 336[8], the constant L, according to the proof of Lemma 
1.2(c)[8], is a multiple of M1. Part (ii) is an obvious improvement of Lemma 2.4[8] 
in the special case f = 0. For (iv), we use Lemma 1.2(e)[8] with X replaced by A,3. 
The proof of that statement is based on the Schauder estimate for the Dirichlet 
problem. The constant in the Schauder estimate is inversely proportional to the 
Holder exponent, so that (iv) results. For (v), we write co as in (2.3)[8] with f = 0 
and differentiate to obtain 

JDxW(t)l < |DxW)(O)j - DxUo,j, 

where Uo, is the flow generated by the velocity, defined in (2.2)[8]. The derivative 
of Uo0 satisfies a variational equation whose coefficients are first derivatives of u 
(see the bottom of p. 337[8] and Lemma 2.8[8], beginning of proof). Thus 

IDxUo,I 6 exp(CAX-t), 

using (iv), and this gives (v). 
This lemma provides us with bounds on u and w in C 1 for a solution of Euler's 

equations. The next lemma uses such bounds to estimate u, w in Sobolev norms. 
Norms with subscripts will be Sobolev norms unless indicated otherwise. 

LEMMA 3.2. Suppose that for 0 < t < T,1 u(t) and o(t) are bounded in C l(R2) by a 
constant M3. Suppose u(O) E H ' ', m > 3, an integer. Then u E C([0, T,]; Hm+l) 

n C'([O, Tj]; Hm). For 0 < j < 2, 

(3.2) ko(t)l < eK2tI w(O)11, 

where K2 depends only on M3. For 3 < j < m, 

(3.3) lw~~~~~~|c(t)lj S eNt 1,(?)ljj 

where Kj depends on j, M3, T,, and jw(O)jjI 1. Consequently, for 3 ] j <in, 

(3.4) Iu(t)lj+, < C{Iu(0)1o + e'Yjo(O)jj}, 
where C depends only on j. 

Proof. Note first that Iu(t)1O is independent of t; this is conservation of energy for 
Euler's equations. Thus, recalling (2.13), under the assumption u(O) E Ho, we have 

u(t) E Hi+' if and only if o(t) E Hi. The proof will be based on estimates of w(t) 
using the vorticity equation (3.1) and a local existence theorem of Kato [6]. 

To estimate o(t) in Hi, we will differentiate (3.1). Applying Dx, where a is a 
multi-index, we expect that 

(3.5) Da(u. VW) D/u .VDa-fiW. 
f3<a 
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We will first derive estimates on the terms in the expansion which will justify this 
formula, and which will also be needed for (3.2), (3.3). For the moment we regard 
u, X as arbitrary functions of x with u E Hm"', w E Hm. Let P,B be the fl-term on 
the right in (3.5), and take IaI = j < m. With /3 = 0, we estimate po in H'-, using 
the fact that multiplication by a C 1 function is a bounded operator on H-1: 

(3.6) IPoI-I < CIulC,IVDawI_1, IpoI_1 < ClulcIlIlj. 
For 1,81 > O we estimate in HO. For I fI = 1 orj we have 

(3.7) IP,B| < CID1uICoIl(Il (131 = 1), 

(3.8) p81 < CID'uljI-ID'Dllco (I A1 = )A 
Forj > 3 and 2 < 1,/1 < j- 1, 

1pO11 < CIDPUI2IDaP+l1)IO, 
so that 

(3.9) 1p9110 < CID 'uljllj-11 (2 < I1 1 j - 1). 
We now justify (3.5), assuming m > 3 and jai < m. We have lklc1 < CI,13 and 

the same for u, so that, from (3.6)-(3.9), 

|Sp| < CIWIMIUIM+I. 
A3 -1 

On the other hand, (u, w) H-* D (u * Vw) is continuous, Hm+ 1 x Hm - H-1. Since 
(3.5) holds for test functions, it also holds for arbitrary u E Hm+l, co E Hm by 
passage to the limit. For later use, we summarize (3.7)-(3.9) using the assumed 
bound M3 and (2.13). As before, we take j = IaI < m. For j < 2, we have from 
(3.7), (3.8) 

(3.10) P,1 < C2M31IIj, 
f3=#0 0 

and, forj > 3, 

(3.11) 2 Pp < Cj{M3 + lWlj_l}l(lj, 

Cj depending only onj. 
We now assume that u is in the class stated in the lemma for 0 < t < T2. This is 

true for some T2 > 0 by a local existence theorem of Kato [6]. Eventually, we will 
show that we can take T2 = T1. We will verify (3.2), (3.3) by induction on j for 
0 < t < T2. Forj = 0, we multiply the vorticity equation (3.1) by o and integrate 
to find Io(t)Io = Iwo(0)Io, since (u Vwo, Co) = 0. For j > 1, we apply Da to (3.1), 
laI <j, and obtain 

(3.12) (DaW), + u V(DaW) = f- Pp. 

Regarding this as a linear equation in Da',, we have 

(3.13) DaC(x, t) = DaW>(0?t(x)) + f'f(QV(x), s) ds, 

where P is the flow generated by u, 

Ds7Ast(X) = u (x), s), t-(x) = x. 
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Since 1D is area-preserving, (3.13) implies 

lk(t)11 < Io(0)lj + fjlf(s)jo d. 

Let R1(t) = 1o(t)1j. If j < 2, we have from (3.10) 

Rj(t) < Rj(0) + f C2M3RK(s) ds. 

This implies Rj(t) < Rj(0)exp(C2M3t), which is (3.2). If j > 3, we know by induc- 
tion that (3.3) holds with j replaced by j- 1, so that Io(s)j1-I is bounded by a 
constant depending only onj, M3, T1, and Iw(0)1j -. Then, from (3.11), 

Rj(t) < Rj(0) + fKjR(s) ds, 

where Kj has the same dependence. This implies (3.3). 
Finally, we show that we can take T2 = TI. Let T. be the supremum of T2 < T1, 

so that u is in the class claimed for 0 < t < T2. We show first that u E 
C([0, T*]; Hm+I) n C'([0, T*]; Htm). For lal < m, we now know thatf(t) in (3.13) 
is bounded in H0 for 0 < t < T*. Thus, it follows from (3.13) that X Ee 
C([O, T*]; Hm). Then (2.13) implies that D,u has the same property. By writing u 
as the integral of u, = Bu, it is clear that u E C([0, T*]; H). Also Bu depends 
continuously in Htm on u E Htm +1, so E C([0, T*]; Htm). 

If T* < T1, the local existence theorem of [6] would show that the solution can 
be continued beyond T* in the same class. This would contradict the definition of 
T*, and therefore T* = T1. This finishes the proof of the lemma except for (3.4), 
which follows directly from (3.3) and (2.13). 

Proof of Lemma 2.1. We use Lemmas 3.1, 3.2 and properties of H(t). The 
operator H(t) has norm < 1 in LP or Hs; moreover, for v E Ca, H(t)v E Ca with 
the same Holder constant. Since H(t) commutes with curl, Lemma 3. 1(i) implies 

1WnIL1 + IWnILO < IWoILi + IWoIL-L 

where w(? = V x un. Next, wo is Lipschitz continuous with constant, say, 21col cI, and 
it follows from Lemma 3. 1(ii) that w,, is Holder continuous with exponent f3fl and 
constant 21ol cl Here 

18n = exp(-COMInzAt) > exp(-COMI T1) b > 0. 

We may therefore apply (iv), (v) of Lemma 3.1 with X replaced by b. Using 
(iii)-(v), we conclude that 

lUnlc' + onICl M3 
for some M3 depending on I'0O Ll + 1wcolc , which is bounded by I u0 X4, and on T. 

We can now use Lemma 3.2 to complete the proof. It follows from the above 
and (3.2) that I11n12 is uniformly bounded. For 3 < j < s - 1, if Icn j- 1 is uniformly 
bounded, then (3.3) implies that lknlj is also. Thus, for uo E X', we have ,n 
bounded in HS- . Since both solution operators preserve Ho-norm, lunJo = luolo. 
The conclusion of the lemma now follows from (2.13). 

Before proving Lemma 2.2, we derive a basic estimate. Suppose u(i), u(2) are 
divergence-free elements of L'([0, T]; HS) and f E L'([0, T1; Hi), where 3 < j 
< s - 1. Let w be the solution of 

W, + P(u()_ Vw + wVu(2)) - Pf, V. w = 0, w(O) = W0. 
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Thus, using the H1 inner product, we have 

I(wW, W)11 < Iu(')Ijlwl2 + Iu2')I1+llww + If I lwl. 
The first term is estimated using (2.2) of [6]. Then for 0 < t < T 

(3.14) Iw(t)Ij < C Iw(0)1j + SUP If(T)j} 

where C depends only on T and sup(j u(1)(T)11 + I u(2)(T) j+ 1). 

Proof of Lemma 2.2. It follows from Lemmas 3.1, 3.2 that IF(t, vo)l is bounded 
by a constant for (t, vo) E Ks(R), and that F is continuous in t separately to Hs. 
Given vo, v6, we first estimate F(t, 130) - F(t, vo). Let v = E(t)vo, 1v = E(t)130, and 
d = v - v. Then 

di+ P(3 -Vd+d Vv)=0, 

and, by (3.14), 

(3.15) Id(t)Is_1 < CIVO - 1IMS-P, 
provided (vo, 0), (60, 0) E Ks(R). It follows from this and the continuity in t that F 
is continuous from Ks(R) to Hs-1. 

We now consider the first partial derivatives with respect to t and vo. We have 

DIF(t, vo) = -P {E(t) vo VE(t)v0}, 

and according to the above remarks this is continuous from KS(R) to Hs2. By a 
formal calculation we expect that D,OF applied to wo should be the solution of 

(3.16) wt+P(v.Vw+w.Vv)=O, V-w=O, w(O)=wO. 

To verify this, we set v6 = vo + wo and define v, 13, d as before. Then e(t) = d(t) - 

w(t) satisfies 

et + P(v- Ve + e Vv) = -P(d- Vd), V. e = 0, e(O) = 0 

and from (3.14), (3.15) 

1 els_ < CIdI2_jl < CIW012s. 

Therefore the derivative is indeed w given by (3.16). We can estimate w using (3.14) 
to show that DvOF is bounded from Hs to Hs- 1. 

We still have to show that D,,,F, as an operator from Hs to Hs2, depends 
continuously on (t, vo). Given vo, Vo, wo, let w be the solution of (3.16) with 
v = E(t)vo, and let w be the solution of the same problem with v replaced by 
13 = E(t)i6o. Let r = w- w. Then 

r, + P(v* Vr + r* Vv + d* Vw +w*Vd) = 0, 

V r = 0, r(O) = 0, 

and, by (3.14), 

Irls2 < Cldls-I1IIS-l C - voIsIwoIs-1 

Also (3.16) leads to the inequality 

Iw(t) - w(t)IS_2 < Clt -tj 1WOls-l1 

These last two estimates show that w depends continuously on (t, vo), uniformly for 
I wol s- bounded. 
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It should now be clear that the statement concerning higher derivatives follows 
from similar arguments. 

Proof of Lemma 2.3. We check by induction that 

|1Un |H? < (pm(nA\t). 

Assuming this for given n, we have 

|IH(/ t/2) Un |H? < o m(nA\t) 

since H has norm < 1. But then, from (1.5), we have 

IE(/t)H(/t/2)unJ|H? < 4M((fn + 1)/t), 
and therefore un+ 1 satifies the same inequality. 

Lemma 2.4 follows from the proof of Lemma 2.2 and the fact that the solution is 
uniformly bounded in C([0, T1]; H?) n C'([O, T1]; Ha- 1), according to (1.5). 

For periodic two-dimensional flows, the only difference in the argument occurs 
in Lemma 3.1. A construction of solutions for Euler's equations in a bounded 
domain, similar to that in R2 of [8], has been given by Kato [7]. It is not hard to see 
that this construction can also be used in the periodic case. Integrating u1 over a 
fundamental domain, we find that any solution must have the property that the 
average value of u(t) is independent of t. Therefore the velocity u(t) is uniquely 
determined by the vorticity and the average value specified by u0. The separation 
of the constant term causes no difficulty in the arguments. The analogue of Lemma 
3.1 then follows from [7]. For three-dimensional periodic flows, we need only note 
that the arguments of [6] can be applied equally well to the periodic case. 

4. Proof of Theorem 13. Our first objective is to establish the estimate in (1.8) for 
solutions of the Navier-Stokes equations in R2. Thus, with the notation from the 
previous sections, if u' satisfies 

(4.1) u,' = B(u') + vAu', u'(x, 0)-uo(x), 

we must prove that for any large time T > 0, if u0 belongs to XS for s > 4, then 
u (t) belongs to L'([0, T]; HS) and there is a fixed constant C so that 

(4.2) max Iu (t)IH| < C, 
O<,,< 1 

where C depends only on T and IuoIxs. 
Proof of the estimate (4.2). Below, C always denotes a generic constant depending 

only on T and luoIKx. When v = 0, this bound has already been proved in Lemma 
3.1 and Lemma 3.2. Let u'(x) = j1 * u0(x) denote the standard mollification of the 
initial data in (4.1); then u'(x) has finite X? norm for any a and 

(4.3) Iuxs < I uoIxs, u- uo in Xs as E > 0. 

Consider the solution u e of (4.1) with the initial data u'(x). From the classical 
existence theorem in [8] and standard Schauder estimates for the heat equation, it 
follows that u e is a smooth function in R2 x [0, T]. Let u,e denote the solution of 
the viscous splitting algorithm in (1.4) with this initial data. We define u',(t) as a 
natural interpolation of u,, given by 

(4.4) ue,(t) = H(T/2)E(T)H(T/2)u,n 
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for nAt < t < (n + I)At, with T = t - nAt, and any n with (n + I)?t < T. From 
the proof of Lemma 2.1 and (4.3), we conclude that, independent of At and E, 

0< E 6 1, 

(4.5) max Iue,(tIx. < C. 

We also claim that 

(4.6) max lUueXt(tl) - uP(L2) L2(R2) < Cltl - t21. 
O<tl <t2< T 

0<E < 1 

For the moment, we assume (4.6) and continue the argument. Let p(x) be a fixed 
smooth function with p 1_ for Ixj < 1 and vanishing for IxI > 2, and set pR(X) = 

p(x/R) for R > 1. Below we fix y with y < 1 and use the well-known interpola- 
tion inequalities 

(4.7) Jul,-, < C(S)Iulo + 8Iul, for any 8 > 0. 

Temporarily, we fix - with 0 < - < 1. From (4.5) and the Rellich compactness 
theorem, {PpRut(t): iAt = T/N, N > 1) is a precompact subset of L2(R2) for any 
fixed t. Therefore the estimates (4.5), (4.6) allow us to apply the proof of the 
Arzela-Ascoli theorem and conclude that {pRu'(t)} is precompact in C([0, T]; L2). 
As in the proof of the Lions-Aubin Lemma (e.g., see [12, Theorem 111.2.1, pp. 
271-272]), we use (4.7) to strengthen this conclusion to 

(4.8) {pRuA,(t)} is precompact in C([0, T]; HS-Y). 

However, for fixed E, uO also belongs to X?; thus it follows from Theorem 1.1, (4.8), 
and the uniqueness of limits in C([0, T]; L2) that 

(4.9) pRu e,(t) -* pRup'e(t) in C([0, T]; HS-Y) as At 0 
By passing to the limit, we see that (4.9) implies that PRU "' inherits the bounds in 
(4.5) and (4.6) with slightly larger constants C independent of R > 1 and E < 1. By 
letting R approach infinity, we conclude that the estimate 

max Iu 'e(t)lxs 6 C, 

max Iup'e(tl) - Up'e(t2)IL2 < Cltl - t21 
O<tl <t2< T 

are valid independent of v and E for 0 < v < 1 and 0 < e 1. 

Recall that u " satisfies (4.1) so that 

Ut-e= B(u,'6) + P,Au,e. 

Integration of this identity from t1 to t2, the use of the first inequality in (4.10a), 
and the fact that s > 4 (see [6]) implies the improved Lipschitz estimate, 

(4.10b) max IU^'e(tl) - UP'e(t2)IH2 < Cltl - t2l. 
O <tl <t2 < T 

0<v 1 
0<E- < I 

Next, we let e 0; using (4. 10a,b), we apply the argument preceding (4.8) to 

PRU ^e. By choosing a diagonal subsequence, we find that there exists Ej -0 and a 
function U(t) so that 
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and 
(4.1 la) Iiu(tl) - i(t2)IH2 < Cltl - t2j. 

Moreover, from the weak compactness of bounded sets in Hs, we have 

(4.1lb) max I i(t)IS S C, 

and it follows from (4.1 1a) and (4.7) that ui E C([0, T]; HS Y) In (4.1 1a,b) C is the 
constant from (4.10). Since u'"5 is a solution of (4.1) for each ej, and since 
s - y > 3, we see from (4.3), (4.11) that iu is a generalized solution of (4.1) in the 
sense defined in [6] so that iu E C([0, T]; H3) n AC([O, T]; H2) n L'([O, T]; H4). 
By the uniqueness theorem of [6], =_ u' where u' is the solution of (4.1) with 
initial data uo(x) (actually, we have used the above argument to construct this 
solution), and the estimate (4.1 lb) implies the required estimate in (4.2). 

It remains to prove (4.6). It is obviously sufficient to check this estimate for t1, t2 

satisfying nAt < t1 < t2 6 (n + I)A t. WithTj = tj- nAt, we have by the triangle 
inequality, 

|H( T2 E(TI) H 21' ) un-H 2 E(T2)HH( 2#une 2 

(4.12) ( |H( Tl )E(TI)H( T)un' -H 2 E(TI)H 2 une H 2T)H 2 n-E 2)f 2 2 L2L 
+ E(TI)H(-j)un' - E(T2)H(-I)un'L 

+ E(T2)H( T) un - E(T2)Hf )Un,l 

From Lemma 2.1, we have Iu,,elx < C, so that, by Lemma 3.2, 

(4.13) max I H(s )E(t)H(S2)UneIx < C. 
O < S1,S2 < At/2 

O<t<At 

This fact implies the bound 

IvAH(s)E(Tl)H(jl/2)uneIL2 < CP; 

applying this estimate and the formula 

(4.14) H(T2/2) - H(T1/2) = vfT2/AH(s) ds, 

we see that the first term on the right-hand side of (4.12) is bounded by vCIt, - t21. 
TIhe second term on the right in (4.12) is similarly estimated by using (4.13), the 
formula 

E(I)V - E(T2)V = B(E(s)v) ds, 

and the fact that HS is a Banach algebra under multiplication for s > 2; thus, the 
second term on the right in (4.12) is bounded by CItI - t21. Finally, for the third 
term above, we use the simplest L2-energy estimate mentioned in the discussion 
above (3.14) to bound this term by 

CIH(T1/2)une -H(T212)uneIL2 

By using (4.13) and (4.14) once again, we bound this by Cjltl - t2l. This estab- 
lishes the fact in (4.6). 
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It should already be evident to the reader that, once the bound in (4.2) is 
established, the argument below Lemma 2.3 and Lemma 2.4 can be repeated with 
no essential changes to yield the second statement in Theorem 1.3. To prove the 
first statement in the theorem, we set r = uv - u? and observe that in the argument 
below Lemma 2.3 and Lemma 2.4, we can set f = V'Au0. Thus, if uo(x) belongs to 
XS, from Lemma 3.1, 

Ifis-2 = ls-2 < V'C 
With this remark, the same argument can be repeated with only minor changes to 
prove the first statement of Theorem 1.3. Of course, statement (3) for part (B) of 
the main theorem follows in the same fashion for short times when N = 3. 
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